1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
| (venv) PS D:\thinkerhui\大模型大创\unixcoder> python run.py --output_dir saved_models\cosqa --model_name_or_path unixcoder-base --do_train --train_data_file dataset\cosqa\cosqa-retrieval-train-19604.json --eval_data_file datas et\cosqa\cosqa-retrieval-dev-500.json --codebase_file dataset\cosqa\code_idx_map.txt --num_train_epochs 10 --code_length 256 --nl_length 128 --train_batch_size 12 --eval_batch_size 12 --learning_rate 2e-5 --seed 123456 01/29/2024 16:35:26 - INFO - __main__ - device: cuda, n_gpu: 1 D:\thinkerhui\大模型大创\unixcoder\venv\Lib\site-packages\torch\_utils.py:831: UserWarning: TypedStorage is depre cated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matte r to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() return self.fget.__get__(instance, owner)() 01/29/2024 16:35:26 - INFO - __main__ - Training/evaluation parameters Namespace(train_data_file='dataset\\cosq a\\cosqa-retrieval-train-19604.json', output_dir='saved_models\\cosqa', eval_data_file='dataset\\cosqa\\cosqa-ret rieval-dev-500.json', test_data_file=None, codebase_file='dataset\\cosqa\\code_idx_map.txt', model_name_or_path=' unixcoder-base', config_name='', tokenizer_name='', nl_length=128, code_length=256, do_train=True, do_eval=False, do_test=False, do_zero_shot=False, do_F2_norm=False, train_batch_size=12, eval_batch_size=12, learning_rate=2e-05, max_grad_norm=1.0, num_train_epochs=10, seed=123456, n_gpu=1, device=device(type='cuda')) 01/29/2024 16:35:31 - INFO - __main__ - *** Example *** 01/29/2024 16:35:31 - INFO - __main__ - idx: 0 01/29/2024 16:35:31 - INFO - __main__ - code_tokens: ['<s>', '<encoder-only>', '</s>', 'def', '_write', 'Boolea n', '_(', '_self', '_,', '_n', '_)', '_:', '_t', '_=', '_TYPE', '_', 'BOOL', '_', 'TRUE', '_if', '_n', '_is', '_F alse', '_:', '_t', '_=', '_TYPE', '_', 'BOOL', '_', 'FALSE', '_self', '_.', '_stream', '_.', '_write', '_(', '_t', '_)', '</s>'] 01/29/2024 16:35:31 - INFO - __main__ - code_ids: 0 6 2 729 2250 4259 400 1358 2019 416 743 545 422 385 8781 18 1 9249 181 4835 462 416 555 3378 545 422 385 8781 181 9249 181 5732 1358 746 2239 746 2250 400 422 743 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01/29/2024 16:35:31 - INFO - __main__ - nl_tokens: ['<s>', '<encoder-only>', '</s>', 'python', '_code', '_to', '_write', '_bool', '_value', '_1', '</s>'] 01/29/2024 16:35:31 - INFO - __main__ - nl_ids: 0 6 2 9038 1717 508 2250 1223 767 524 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01/29/2024 16:35:31 - INFO - __main__ - *** Example *** 01/29/2024 16:35:31 - INFO - __main__ - idx: 1 01/29/2024 16:35:31 - INFO - __main__ - code_tokens: ['<s>', '<encoder-only>', '</s>', 'def', '_paste', '_(', ' _x', 'sel', '_=', '_False', '_)', '_:', '_selection', '_=', '_"', 'primary', '"', '_if', '_x', 'sel', '_else', '_ "', 'clipboard', '"', '_try', '_:', '_return', '_subprocess', '_.', '_P', 'open', '_(', '_[', '_"', 'xc', 'lip', '"', '_,', '_"-', 'selection', '"', '_,', '_selection', '_,', '_"-', 'o', '"', '_]', '_,', '_stdout', '_=', '_sub process', '_.', '_PIPE', '_)', '_.', '_communicate', '_(', '_)', '_[', '_0', '_]', '_.', '_decode', '_(', '_"', ' utf', '-', '8', '"', '_)', '_except', '_OSError', '_as', '_why', '_:', '_raise', '_X', 'clip', 'NotFound', '</s>'] 01/29/2024 16:35:31 - INFO - __main__ - code_ids: 0 6 2 729 32436 400 868 4761 385 3378 743 545 6244 385 437 71 30 120 462 868 4761 669 437 26898 120 1568 545 483 13053 746 615 2012 400 626 437 5444 2740 120 2019 4007 6125 12 0 2019 6244 2019 4007 197 120 2406 2019 8932 385 13053 746 17711 743 746 43633 400 743 626 461 2406 746 4954 400 437 3737 131 142 120 743 3552 22934 880 14904 545 3085 1352 7283 6064 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01/29/2024 16:35:31 - INFO - __main__ - nl_tokens: ['<s>', '<encoder-only>', '</s>', '"', 'python', '_how', '_to', '_manip', 'ulate', '_clipboard', '"', '</s>'] 01/29/2024 16:35:31 - INFO - __main__ - nl_ids: 0 6 2 120 9038 5064 508 23181 4526 29038 120 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01/29/2024 16:35:31 - INFO - __main__ - *** Example *** 01/29/2024 16:35:31 - INFO - __main__ - idx: 2 01/29/2024 16:35:31 - INFO - __main__ - code_tokens: ['<s>', '<encoder-only>', '</s>', 'def', '__', 'format', ' _', 'json', '_(', '_data', '_,', '_theme', '_)', '_:', '_output', '_=', '_json', '_.', '_d', 'umps', '_(', '_data ', '_,', '_indent', '_=', '_2', '_,', '_sort', '_', 'keys', '_=', '_True', '_)', '_if', '_py', 'g', 'ments', '_an d', '_sys', '_.', '_stdout', '_.', '_is', 'at', 'ty', '_(', '_)', '_:', '_style', '_=', '_get', '_', 'style', '_' , 'by', '_', 'name', '_(', '_theme', '_)', '_formatter', '_=', '_Terminal', '256', 'Formatter', '_(', '_style', ' _=', '_style', '_)', '_return', '_py', 'g', 'ments', '_.', '_highlight', '_(', '_output', '_,', '_Json', 'Lexer', '_(', '_)', '_,', '_formatter', '_)', '_return', '_output', '</s>'] 01/29/2024 16:35:31 - INFO - __main__ - code_ids: 0 6 2 729 623 1478 181 2317 400 869 2019 11079 743 545 1721 3 85 3192 746 480 11537 400 869 2019 5310 385 688 2019 4821 181 2814 385 2998 743 462 4689 189 2067 706 3455 746 89 32 746 555 384 2329 400 743 545 3221 385 744 181 2057 181 2499 181 616 400 11079 743 12641 385 41581 3528 7088 40 0 3221 385 3221 743 483 4689 189 2067 746 14885 400 1721 2019 5902 12901 400 743 2019 12641 743 483 1721 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01/29/2024 16:35:31 - INFO - __main__ - nl_tokens: ['<s>', '<encoder-only>', '</s>', 'python', '_co', 'lored', '_output', '_to', '_html', '</s>'] 01/29/2024 16:35:31 - INFO - __main__ - nl_ids: 0 6 2 9038 1912 21320 1721 508 4875 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D:\thinkerhui\大模型大创\unixcoder\venv\Lib\site-packages\transformers\optimization.py:429: FutureWarning: This i mplementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning warnings.warn( 01/29/2024 16:35:31 - INFO - __main__ - ***** Running training ***** 01/29/2024 16:35:31 - INFO - __main__ - Num examples = 19604 01/29/2024 16:35:31 - INFO - __main__ - Num Epochs = 10 01/29/2024 16:35:31 - INFO - __main__ - Instantaneous batch size per GPU = 12 01/29/2024 16:35:31 - INFO - __main__ - Total train batch size = 12 01/29/2024 16:35:31 - INFO - __main__ - Total optimization steps = 16340 01/29/2024 16:36:25 - INFO - __main__ - epoch 0 step 100 loss 0.13636 01/29/2024 16:37:08 - INFO - __main__ - epoch 0 step 200 loss 0.06745 01/29/2024 16:37:52 - INFO - __main__ - epoch 0 step 300 loss 0.07746 01/29/2024 16:38:35 - INFO - __main__ - epoch 0 step 400 loss 0.0599 01/29/2024 16:39:19 - INFO - __main__ - epoch 0 step 500 loss 0.04683 01/29/2024 16:40:02 - INFO - __main__ - epoch 0 step 600 loss 0.05991 01/29/2024 16:40:45 - INFO - __main__ - epoch 0 step 700 loss 0.04931 01/29/2024 16:41:29 - INFO - __main__ - epoch 0 step 800 loss 0.04109 01/29/2024 16:42:13 - INFO - __main__ - epoch 0 step 900 loss 0.03477 01/29/2024 16:42:57 - INFO - __main__ - epoch 0 step 1000 loss 0.03945 01/29/2024 16:43:42 - INFO - __main__ - epoch 0 step 1100 loss 0.04783 01/29/2024 16:44:26 - INFO - __main__ - epoch 0 step 1200 loss 0.03678 01/29/2024 16:45:11 - INFO - __main__ - epoch 0 step 1300 loss 0.04101 01/29/2024 16:45:55 - INFO - __main__ - epoch 0 step 1400 loss 0.04457 01/29/2024 16:46:39 - INFO - __main__ - epoch 0 step 1500 loss 0.04475 01/29/2024 16:47:23 - INFO - __main__ - epoch 0 step 1600 loss 0.03299 01/29/2024 16:47:40 - INFO - __main__ - ***** Running evaluation ***** 01/29/2024 16:47:40 - INFO - __main__ - Num queries = 500 01/29/2024 16:47:40 - INFO - __main__ - Num codes = 6267 01/29/2024 16:47:40 - INFO - __main__ - Batch size = 12 01/29/2024 16:48:47 - INFO - __main__ - eval_mrr = 0.6323 01/29/2024 16:48:47 - INFO - __main__ - ******************** 01/29/2024 16:48:47 - INFO - __main__ - Best mrr:0.6323 01/29/2024 16:48:47 - INFO - __main__ - ******************** 01/29/2024 16:48:47 - INFO - __main__ - Saving model checkpoint to saved_models\cosqa\checkpoint-best-mrr\model.bin 01/29/2024 16:49:39 - INFO - __main__ - epoch 1 step 100 loss 0.03557 01/29/2024 16:50:22 - INFO - __main__ - epoch 1 step 200 loss 0.02627 01/29/2024 16:51:06 - INFO - __main__ - epoch 1 step 300 loss 0.03244 01/29/2024 16:51:49 - INFO - __main__ - epoch 1 step 400 loss 0.02158 01/29/2024 16:52:33 - INFO - __main__ - epoch 1 step 500 loss 0.01971 01/29/2024 16:53:16 - INFO - __main__ - epoch 1 step 600 loss 0.02587 01/29/2024 16:54:00 - INFO - __main__ - epoch 1 step 700 loss 0.03965 01/29/2024 16:54:44 - INFO - __main__ - epoch 1 step 800 loss 0.04392 01/29/2024 16:55:28 - INFO - __main__ - epoch 1 step 900 loss 0.01245 01/29/2024 16:56:11 - INFO - __main__ - epoch 1 step 1000 loss 0.01865 01/29/2024 16:56:55 - INFO - __main__ - epoch 1 step 1100 loss 0.02658 01/29/2024 16:57:38 - INFO - __main__ - epoch 1 step 1200 loss 0.03788 01/29/2024 16:58:22 - INFO - __main__ - epoch 1 step 1300 loss 0.03048 01/29/2024 16:59:05 - INFO - __main__ - epoch 1 step 1400 loss 0.02551 01/29/2024 16:59:48 - INFO - __main__ - epoch 1 step 1500 loss 0.0335 01/29/2024 17:00:32 - INFO - __main__ - epoch 1 step 1600 loss 0.02083 01/29/2024 17:00:49 - INFO - __main__ - ***** Running evaluation ***** 01/29/2024 17:00:49 - INFO - __main__ - Num queries = 500 01/29/2024 17:00:49 - INFO - __main__ - Num codes = 6267 01/29/2024 17:00:49 - INFO - __main__ - Batch size = 12 01/29/2024 17:01:55 - INFO - __main__ - eval_mrr = 0.6441 01/29/2024 17:01:55 - INFO - __main__ - ******************** 01/29/2024 17:01:55 - INFO - __main__ - Best mrr:0.6441 01/29/2024 17:01:55 - INFO - __main__ - ******************** 01/29/2024 17:01:56 - INFO - __main__ - Saving model checkpoint to saved_models\cosqa\checkpoint-best-mrr\model.bin 01/29/2024 17:02:47 - INFO - __main__ - epoch 2 step 100 loss 0.02099 01/29/2024 17:03:30 - INFO - __main__ - epoch 2 step 200 loss 0.01507 01/29/2024 17:04:13 - INFO - __main__ - epoch 2 step 300 loss 0.02138 01/29/2024 17:04:57 - INFO - __main__ - epoch 2 step 400 loss 0.01924 01/29/2024 17:05:41 - INFO - __main__ - epoch 2 step 500 loss 0.01657 01/29/2024 17:06:25 - INFO - __main__ - epoch 2 step 600 loss 0.02167 01/29/2024 17:07:10 - INFO - __main__ - epoch 2 step 700 loss 0.01339 01/29/2024 17:07:54 - INFO - __main__ - epoch 2 step 800 loss 0.01948 01/29/2024 17:08:38 - INFO - __main__ - epoch 2 step 900 loss 0.01726 01/29/2024 17:09:23 - INFO - __main__ - epoch 2 step 1000 loss 0.02174 01/29/2024 17:10:07 - INFO - __main__ - epoch 2 step 1100 loss 0.01927 01/29/2024 17:10:51 - INFO - __main__ - epoch 2 step 1200 loss 0.01658 01/29/2024 17:11:36 - INFO - __main__ - epoch 2 step 1300 loss 0.02042 01/29/2024 17:12:20 - INFO - __main__ - epoch 2 step 1400 loss 0.02495 01/29/2024 17:13:04 - INFO - __main__ - epoch 2 step 1500 loss 0.00752 01/29/2024 17:13:49 - INFO - __main__ - epoch 2 step 1600 loss 0.02654 01/29/2024 17:14:08 - INFO - __main__ - ***** Running evaluation ***** 01/29/2024 17:14:08 - INFO - __main__ - Num queries = 500 01/29/2024 17:14:08 - INFO - __main__ - Num codes = 6267 01/29/2024 17:14:08 - INFO - __main__ - Batch size = 12 01/29/2024 17:15:16 - INFO - __main__ - eval_mrr = 0.6522 01/29/2024 17:15:16 - INFO - __main__ - ******************** 01/29/2024 17:15:16 - INFO - __main__ - Best mrr:0.6522 01/29/2024 17:15:16 - INFO - __main__ - ******************** 01/29/2024 17:15:16 - INFO - __main__ - Saving model checkpoint to saved_models\cosqa\checkpoint-best-mrr\model.bin 01/29/2024 17:16:09 - INFO - __main__ - epoch 3 step 100 loss 0.02855 01/29/2024 17:16:53 - INFO - __main__ - epoch 3 step 200 loss 0.02285 01/29/2024 17:17:38 - INFO - __main__ - epoch 3 step 300 loss 0.01508 01/29/2024 17:18:22 - INFO - __main__ - epoch 3 step 400 loss 0.01831 01/29/2024 17:19:06 - INFO - __main__ - epoch 3 step 500 loss 0.01391 01/29/2024 17:19:51 - INFO - __main__ - epoch 3 step 600 loss 0.01907 01/29/2024 17:20:35 - INFO - __main__ - epoch 3 step 700 loss 0.01575 01/29/2024 17:21:20 - INFO - __main__ - epoch 3 step 800 loss 0.01694 01/29/2024 17:22:04 - INFO - __main__ - epoch 3 step 900 loss 0.02172 01/29/2024 17:22:48 - INFO - __main__ - epoch 3 step 1000 loss 0.01624 01/29/2024 17:23:32 - INFO - __main__ - epoch 3 step 1100 loss 0.01293 01/29/2024 17:24:17 - INFO - __main__ - epoch 3 step 1200 loss 0.01496 01/29/2024 17:25:01 - INFO - __main__ - epoch 3 step 1300 loss 0.01474 01/29/2024 17:25:45 - INFO - __main__ - epoch 3 step 1400 loss 0.0136 01/29/2024 17:26:30 - INFO - __main__ - epoch 3 step 1500 loss 0.0134 01/29/2024 17:27:14 - INFO - __main__ - epoch 3 step 1600 loss 0.02719 01/29/2024 17:27:33 - INFO - __main__ - ***** Running evaluation ***** 01/29/2024 17:27:33 - INFO - __main__ - Num queries = 500 01/29/2024 17:27:33 - INFO - __main__ - Num codes = 6267 01/29/2024 17:27:33 - INFO - __main__ - Batch size = 12 01/29/2024 17:28:40 - INFO - __main__ - eval_mrr = 0.6542 01/29/2024 17:28:40 - INFO - __main__ - ******************** 01/29/2024 17:28:40 - INFO - __main__ - Best mrr:0.6542 01/29/2024 17:28:40 - INFO - __main__ - ******************** 01/29/2024 17:28:41 - INFO - __main__ - Saving model checkpoint to saved_models\cosqa\checkpoint-best-mrr\model.bin 01/29/2024 17:29:33 - INFO - __main__ - epoch 4 step 100 loss 0.01079 01/29/2024 17:30:18 - INFO - __main__ - epoch 4 step 200 loss 0.01621 01/29/2024 17:31:02 - INFO - __main__ - epoch 4 step 300 loss 0.01586 01/29/2024 17:31:46 - INFO - __main__ - epoch 4 step 400 loss 0.0139 01/29/2024 17:32:31 - INFO - __main__ - epoch 4 step 500 loss 0.0143 01/29/2024 17:33:16 - INFO - __main__ - epoch 4 step 600 loss 0.02795 01/29/2024 17:34:00 - INFO - __main__ - epoch 4 step 700 loss 0.01114 01/29/2024 17:34:44 - INFO - __main__ - epoch 4 step 800 loss 0.02773 01/29/2024 17:35:28 - INFO - __main__ - epoch 4 step 900 loss 0.01336 01/29/2024 17:36:13 - INFO - __main__ - epoch 4 step 1000 loss 0.01658 01/29/2024 17:36:57 - INFO - __main__ - epoch 4 step 1100 loss 0.02225 01/29/2024 17:37:41 - INFO - __main__ - epoch 4 step 1200 loss 0.00846 01/29/2024 17:38:25 - INFO - __main__ - epoch 4 step 1300 loss 0.01427 01/29/2024 17:39:08 - INFO - __main__ - epoch 4 step 1400 loss 0.01837 01/29/2024 17:39:52 - INFO - __main__ - epoch 4 step 1500 loss 0.01503 01/29/2024 17:40:35 - INFO - __main__ - epoch 4 step 1600 loss 0.01601 01/29/2024 17:40:52 - INFO - __main__ - ***** Running evaluation ***** 01/29/2024 17:40:52 - INFO - __main__ - Num queries = 500 01/29/2024 17:40:52 - INFO - __main__ - Num codes = 6267 01/29/2024 17:40:52 - INFO - __main__ - Batch size = 12 01/29/2024 17:41:58 - INFO - __main__ - eval_mrr = 0.6696 01/29/2024 17:41:58 - INFO - __main__ - ******************** 01/29/2024 17:41:58 - INFO - __main__ - Best mrr:0.6696 01/29/2024 17:41:58 - INFO - __main__ - ******************** 01/29/2024 17:41:59 - INFO - __main__ - Saving model checkpoint to saved_models\cosqa\checkpoint-best-mrr\model.bin 01/29/2024 17:42:50 - INFO - __main__ - epoch 5 step 100 loss 0.0175 01/29/2024 17:43:33 - INFO - __main__ - epoch 5 step 200 loss 0.01447 01/29/2024 17:44:17 - INFO - __main__ - epoch 5 step 300 loss 0.02013 01/29/2024 17:45:00 - INFO - __main__ - epoch 5 step 400 loss 0.02057 01/29/2024 17:45:43 - INFO - __main__ - epoch 5 step 500 loss 0.02427 01/29/2024 17:46:27 - INFO - __main__ - epoch 5 step 600 loss 0.01444 01/29/2024 17:47:10 - INFO - __main__ - epoch 5 step 700 loss 0.0093 01/29/2024 17:47:54 - INFO - __main__ - epoch 5 step 800 loss 0.01442 01/29/2024 17:48:37 - INFO - __main__ - epoch 5 step 900 loss 0.01147 01/29/2024 17:49:21 - INFO - __main__ - epoch 5 step 1000 loss 0.0238 01/29/2024 17:50:04 - INFO - __main__ - epoch 5 step 1100 loss 0.02009 01/29/2024 17:50:47 - INFO - __main__ - epoch 5 step 1200 loss 0.01224 01/29/2024 17:51:31 - INFO - __main__ - epoch 5 step 1300 loss 0.01701 01/29/2024 17:52:14 - INFO - __main__ - epoch 5 step 1400 loss 0.01257 01/29/2024 17:52:58 - INFO - __main__ - epoch 5 step 1500 loss 0.01694 01/29/2024 17:53:41 - INFO - __main__ - epoch 5 step 1600 loss 0.01883 01/29/2024 17:53:58 - INFO - __main__ - ***** Running evaluation ***** 01/29/2024 17:53:58 - INFO - __main__ - Num queries = 500 01/29/2024 17:53:58 - INFO - __main__ - Num codes = 6267 01/29/2024 17:53:58 - INFO - __main__ - Batch size = 12 01/29/2024 17:55:04 - INFO - __main__ - eval_mrr = 0.6819 01/29/2024 17:55:04 - INFO - __main__ - ******************** 01/29/2024 17:55:04 - INFO - __main__ - Best mrr:0.6819 01/29/2024 17:55:04 - INFO - __main__ - ******************** 01/29/2024 17:55:05 - INFO - __main__ - Saving model checkpoint to saved_models\cosqa\checkpoint-best-mrr\model.bin 01/29/2024 17:55:56 - INFO - __main__ - epoch 6 step 100 loss 0.01716 01/29/2024 17:56:39 - INFO - __main__ - epoch 6 step 200 loss 0.00899 01/29/2024 17:57:23 - INFO - __main__ - epoch 6 step 300 loss 0.01626 01/29/2024 17:58:06 - INFO - __main__ - epoch 6 step 400 loss 0.01486 01/29/2024 17:58:50 - INFO - __main__ - epoch 6 step 500 loss 0.02121 01/29/2024 17:59:33 - INFO - __main__ - epoch 6 step 600 loss 0.01381 01/29/2024 18:00:16 - INFO - __main__ - epoch 6 step 700 loss 0.01112 01/29/2024 18:01:00 - INFO - __main__ - epoch 6 step 800 loss 0.00927 01/29/2024 18:01:43 - INFO - __main__ - epoch 6 step 900 loss 0.0235 01/29/2024 18:02:26 - INFO - __main__ - epoch 6 step 1000 loss 0.0092 01/29/2024 18:03:10 - INFO - __main__ - epoch 6 step 1100 loss 0.01253 01/29/2024 18:03:53 - INFO - __main__ - epoch 6 step 1200 loss 0.00726 01/29/2024 18:04:37 - INFO - __main__ - epoch 6 step 1300 loss 0.0115 01/29/2024 18:05:20 - INFO - __main__ - epoch 6 step 1400 loss 0.0111 01/29/2024 18:06:04 - INFO - __main__ - epoch 6 step 1500 loss 0.01461 01/29/2024 18:06:47 - INFO - __main__ - epoch 6 step 1600 loss 0.01115 01/29/2024 18:07:04 - INFO - __main__ - ***** Running evaluation ***** 01/29/2024 18:07:04 - INFO - __main__ - Num queries = 500 01/29/2024 18:07:04 - INFO - __main__ - Num codes = 6267 01/29/2024 18:07:04 - INFO - __main__ - Batch size = 12 01/29/2024 18:08:11 - INFO - __main__ - eval_mrr = 0.6858 01/29/2024 18:08:11 - INFO - __main__ - ******************** 01/29/2024 18:08:11 - INFO - __main__ - Best mrr:0.6858 01/29/2024 18:08:11 - INFO - __main__ - ******************** 01/29/2024 18:08:11 - INFO - __main__ - Saving model checkpoint to saved_models\cosqa\checkpoint-best-mrr\model.bin 01/29/2024 18:09:02 - INFO - __main__ - epoch 7 step 100 loss 0.01316 01/29/2024 18:09:45 - INFO - __main__ - epoch 7 step 200 loss 0.01817 01/29/2024 18:10:29 - INFO - __main__ - epoch 7 step 300 loss 0.01309 01/29/2024 18:11:12 - INFO - __main__ - epoch 7 step 400 loss 0.01251 01/29/2024 18:11:56 - INFO - __main__ - epoch 7 step 500 loss 0.01529 01/29/2024 18:12:39 - INFO - __main__ - epoch 7 step 600 loss 0.01101 01/29/2024 18:13:22 - INFO - __main__ - epoch 7 step 700 loss 0.01705 01/29/2024 18:14:06 - INFO - __main__ - epoch 7 step 800 loss 0.00989 01/29/2024 18:14:49 - INFO - __main__ - epoch 7 step 900 loss 0.00921 01/29/2024 18:15:33 - INFO - __main__ - epoch 7 step 1000 loss 0.01106 01/29/2024 18:16:16 - INFO - __main__ - epoch 7 step 1100 loss 0.00759 01/29/2024 18:17:00 - INFO - __main__ - epoch 7 step 1200 loss 0.00909 01/29/2024 18:17:43 - INFO - __main__ - epoch 7 step 1300 loss 0.0152 01/29/2024 18:18:26 - INFO - __main__ - epoch 7 step 1400 loss 0.01086 01/29/2024 18:19:10 - INFO - __main__ - epoch 7 step 1500 loss 0.01087 01/29/2024 18:19:53 - INFO - __main__ - epoch 7 step 1600 loss 0.00908 01/29/2024 18:20:10 - INFO - __main__ - ***** Running evaluation ***** 01/29/2024 18:20:10 - INFO - __main__ - Num queries = 500 01/29/2024 18:20:10 - INFO - __main__ - Num codes = 6267 01/29/2024 18:20:10 - INFO - __main__ - Batch size = 12 01/29/2024 18:21:16 - INFO - __main__ - eval_mrr = 0.6839 01/29/2024 18:22:07 - INFO - __main__ - epoch 8 step 100 loss 0.00553 01/29/2024 18:22:50 - INFO - __main__ - epoch 8 step 200 loss 0.00996 01/29/2024 18:23:34 - INFO - __main__ - epoch 8 step 300 loss 0.0075 01/29/2024 18:24:17 - INFO - __main__ - epoch 8 step 400 loss 0.01108 01/29/2024 18:25:01 - INFO - __main__ - epoch 8 step 500 loss 0.00765 01/29/2024 18:25:44 - INFO - __main__ - epoch 8 step 600 loss 0.01275 01/29/2024 18:26:28 - INFO - __main__ - epoch 8 step 700 loss 0.00875 01/29/2024 18:27:11 - INFO - __main__ - epoch 8 step 800 loss 0.011 01/29/2024 18:27:54 - INFO - __main__ - epoch 8 step 900 loss 0.0118 01/29/2024 18:28:38 - INFO - __main__ - epoch 8 step 1000 loss 0.00724 01/29/2024 18:29:21 - INFO - __main__ - epoch 8 step 1100 loss 0.00416 01/29/2024 18:30:05 - INFO - __main__ - epoch 8 step 1200 loss 0.01071 01/29/2024 18:30:48 - INFO - __main__ - epoch 8 step 1300 loss 0.00849 01/29/2024 18:31:31 - INFO - __main__ - epoch 8 step 1400 loss 0.01281 01/29/2024 18:32:15 - INFO - __main__ - epoch 8 step 1500 loss 0.01515 01/29/2024 18:32:58 - INFO - __main__ - epoch 8 step 1600 loss 0.01455 01/29/2024 18:33:15 - INFO - __main__ - ***** Running evaluation ***** 01/29/2024 18:33:15 - INFO - __main__ - Num queries = 500 01/29/2024 18:33:15 - INFO - __main__ - Num codes = 6267 01/29/2024 18:33:15 - INFO - __main__ - Batch size = 12 01/29/2024 18:34:22 - INFO - __main__ - eval_mrr = 0.6901 01/29/2024 18:34:22 - INFO - __main__ - ******************** 01/29/2024 18:34:22 - INFO - __main__ - Best mrr:0.6901 01/29/2024 18:34:22 - INFO - __main__ - ******************** 01/29/2024 18:34:22 - INFO - __main__ - Saving model checkpoint to saved_models\cosqa\checkpoint-best-mrr\model.bin 01/29/2024 18:35:13 - INFO - __main__ - epoch 9 step 100 loss 0.01404 01/29/2024 18:35:57 - INFO - __main__ - epoch 9 step 200 loss 0.01246 01/29/2024 18:36:40 - INFO - __main__ - epoch 9 step 300 loss 0.01094 01/29/2024 18:37:23 - INFO - __main__ - epoch 9 step 400 loss 0.00944 01/29/2024 18:38:07 - INFO - __main__ - epoch 9 step 500 loss 0.01247 01/29/2024 18:39:34 - INFO - __main__ - epoch 9 step 700 loss 0.01045 01/29/2024 18:40:17 - INFO - __main__ - epoch 9 step 800 loss 0.00451 01/29/2024 18:41:00 - INFO - __main__ - epoch 9 step 900 loss 0.00712 01/29/2024 18:41:44 - INFO - __main__ - epoch 9 step 1000 loss 0.00727 01/29/2024 18:39:34 - INFO - __main__ - epoch 9 step 700 loss 0.01045 01/29/2024 18:40:17 - INFO - __main__ - epoch 9 step 800 loss 0.00451 01/29/2024 18:41:00 - INFO - __main__ - epoch 9 step 900 loss 0.00712 01/29/2024 18:41:44 - INFO - __main__ - epoch 9 step 1000 loss 0.00727 01/29/2024 18:42:27 - INFO - __main__ - epoch 9 step 1100 loss 0.01189 01/29/2024 18:43:11 - INFO - __main__ - epoch 9 step 1200 loss 0.00638 01/29/2024 18:43:54 - INFO - __main__ - epoch 9 step 1300 loss 0.00737 01/29/2024 18:44:37 - INFO - __main__ - epoch 9 step 1400 loss 0.00871 01/29/2024 18:45:21 - INFO - __main__ - epoch 9 step 1500 loss 0.01583 01/29/2024 18:46:04 - INFO - __main__ - epoch 9 step 1600 loss 0.00592 01/29/2024 18:46:21 - INFO - __main__ - ***** Running evaluation ***** 01/29/2024 18:46:21 - INFO - __main__ - Num queries = 500 01/29/2024 18:46:21 - INFO - __main__ - Num codes = 6267 01/29/2024 18:46:21 - INFO - __main__ - Batch size = 12 01/29/2024 18:47:28 - INFO - __main__ - eval_mrr = 0.6993 01/29/2024 18:47:28 - INFO - __main__ - ******************** 01/29/2024 18:47:28 - INFO - __main__ - Best mrr:0.6993 01/29/2024 18:47:28 - INFO - __main__ - ******************** 01/29/2024 18:47:28 - INFO - __main__ - Saving model checkpoint to saved_models\cosqa\checkpoint-best-mrr\model.bin
|